
การเขยีนโปรแกรมคอมพวิเตอรข์ ั ÊนสงูเพืÉอ
ควบคมุอุปกรณ์

Advance Computer Programming

สอนโดย พงศธร เกยีรตเิจรญิพร (มวิ)

[สปัดาหท์ีÉ 6]

Unit 3 – Sound and Effects (Run and
Jump Prototype)

Unit 3 – Sound and Effects

Unit 3 – Animation, Sound and Effects

• Run and Jump Prototype
• Jump Force

• Make the World Whiz By

• Don’t Just Stand There

• Particles and Sound Effects

Jump Force – โดดไปให้
สุดแรง!

Jump Force

• Step 1 : Open prototype and change background

• Step 2 : Choose and set up a player character

• Step 3 : Make player jump at start

• Step 4 : Make player jump if spacebar pressed

• Step 5 : Tweak the jump force and gravity

• Step 6 : Prevent player from double-jumping

• Step 7 : Make an obstacle and move it left

• Step 8 : Create a spawn manager

• Step 9 : Spawn obstacles at intervals

Jump Force – Step 1 : Open prototype and
change background
1. Open Unity Hub and create an empty “Prototype 3” project in your course directory on the

correct Unity version.
2. Click to download the Prototype 3 Starter Files, extract the compressed folder, and then

import the .unitypackage into your project.
3. Open the Prototype 3 scene and delete the Sample Scene without saving
4. Select the Background object in the hierarchy, then in the Sprite Renderer component >

Sprite, select the _City, _Nature, or _Town image

The first thing we need to do is set up a new project, import the starter files, and choose a
background for the game.

Tip: Browse all of the Player and
Background options before choosing
either - some work better with others

New Concept: Sprites / Sprite
Renderer

Jump Force – Step 2 : Choose and set up a
player character
1. From Course Library > Characters, Drag a character into the hierarchy, rename it

“Player”,
then rotate it on the Y axis to face to the right

2. Add a Rigid Body component
3. Add a box collider, then edit the collider bounds
4. Create a new “Scripts” folder in Assets, create a “PlayerController” script inside,

and attach it to the player

Now that we’ve started the project and chosen a background, we need to set up a character
for the player to control.

Warning: Keep isTrigger
UNCHECKED!

Don’t worry: We will get the player and the
background moving soon

Tip: Use isometric view and the gizmos to cycle
around and edit the collider with a clear perspective

Jump Force – Step 3 : Make player jump at start

1. In PlayerController.cs, declare a new private Rigidbody playerRb; variable
2. In Start(), initialize playerRb = GetComponent<Rigidbody>();
3. In Start(), use the AddForce method to make the player jump at the start of the

game

Until now, we’ve only called methods on the entirety of a gameobject or the transform component. If
we want more control over the force and gravity of the player, we need to call methods on the
player’s Rigidbody component, specifically.

New Function: GetComponentTip: The playerRb variable could apply to anything,
which is why we need to specify using
GetComponent

Jump Force – Step 4 : Make player jump if
spacebar pressed

1. In Update() add an if-then statement checking if the spacebar is pressed
2. Cut and paste the AddForce code from Start() into the if-statement
3. Add the ForceMode.Impulse parameter to the AddForce call, then reduce force

multiplier value

We don’t want the player jumping at start - they should only jump when we tell it to by
pressing spacebar.

Jump Force – Step 5 : Tweak the jump force and
gravity
1. Replace the hardcoded value with a new public float jumpForce variable
2. Add a new public float gravityModifier variable and in Start(), add Physics.gravity

*= gravityModifier;
3. In the inspector, tweak the gravityModifer, jumpForce, and Rigidbody mass values

to make it fun

We need to give the player a perfect jump by tweaking the force of the jump, the
gravity of the scene, and the mass of the character.

Jump Force – Step 6 : Prevent player from
double-jumping

1. Add a new public bool isOnGround variable and set it equal to true
2. In the if-statement making the player jump, set isOnGround = false, then test
3. Add a condition && isOnGround to the if-statement
4. Add a new void onCollisionEnter method, set isOnGround = true in that method,

then test

The player can spam the spacebar and send the character hurtling into the sky. In
order to stop this, we need an if-statement that makes sure the player is grounded
before they jump.

Jump Force – Step 7 : Make an obstacle and
move it left

1. From Course Library > Obstacles, add an obstacle, rename it “Obstacle”, and position it where it
should spawn

2. Apply a Rigid Body and Box Collider component, then edit the collider bounds to fit the obstacle
3. Create a new “Prefabs” folder and drag it in to create a new Original Prefab
4. Create a new “MoveLeft” script, apply it to the obstacle, and open it
5. In MoveLeft.cs, write the code to Translate it to the left according to the speed variable
6. Apply the MoveLeft script to the Background

We’ve got the player jumping in the air, but now they need something to jump over.
We’re going to use some familiar code to instantiate obstacles and throw them in the
player’s path.

Jump Force – Step 8 : Create a spawn manager

1. Create a new “Spawn Manager” empty object, then apply a new SpawnManager.cs script
to it

2. In SpawnManager.cs, declare a new public GameObject obstaclePrefab;, then assign your
prefab to the new variable in the inspector

3. Declare a new private Vector3 spawnPos at your spawn location
4. In Start(), Instantiate a new obstacle prefab, then delete your prefab from the scene and

test

Similar to the last project, we need to create an empty object Spawn Manager that will
instantiate obstacle prefabs.

Jump Force – Step 9 : Spawn obstacles at
intervals

1. Create a new void SpawnObstacle method, then move the Instantiate call inside it
2. Create new float variables for startDelay and repeatRate
3. Have your obstacles spawn on intervals using the InvokeRepeating() method
4. In the Player RigidBody component, expand Constraints, then Freeze all but the Y

position

Our spawn manager instantiates prefabs on start, but we must write a new function and utilize
InvokeRepeating if it to spawn obstacles on a timer. Lastly, we must modify the character’s
RigidBody so it can’t be knocked over.

Make the World Whiz By – สรา้งใหโ้ลก
เลืÉอนผา่น~

Make the World Whiz By

• Step 1 : Create a script to repeat background

• Step 2 : Reset position of background

• Step 3 : Fix background repeat with collider

• Step 4 : Add a new game over trigger

• Step 5 : Stop MoveLeft on gameOver

• Step 6 : Stop obstacle spawning on gameOver

• Step 7 : Destroy obstacles that exit bounds

Make the World Whiz By – Step 1 : Create a script to repeat
backgroundWe need to repeat the background and move it left at the same speed as the obstacles, to
make it look like the world is rushing by. Thankfully we already have a move left script, but we
will need a new script to make it repeat.

Make the World Whiz By – Step 2 : Reset position of
background
In order to repeat the background and provide the illusion of a world rushing by, we
need to reset the background object’s position so it fits together perfectly.

Make the World Whiz By – Step 3 : Fix background repeat
with colliderWe’ve got the background repeating every few seconds, but the transition looks pretty
awkward. We need make the background loop perfectly and seamlessly with some
new variables.

Make the World Whiz By – Step 4 : Add a new game over
triggerWhen the player collides with an obstacle, we want to trigger a “Game Over” state
that stops everything In order to do so, we need a way to label and discern all game
objects that the player collides with.

Make the World Whiz By – Step 5 : Stop MoveLeft on
gameOver
We’ve added a gameOver bool that seems to work, but the background and the objects continue to
move when they collide with an obstacle. We need the MoveLeft script to communicate with the
PlayerController, and stop once the player triggers gameOver.

Make the World Whiz By – Step 6 : Stop obstacle spawning
on gameOverThe background and the obstacles stop moving when gameOver == true, but the Spawn
Manager is still raising an army of obstacles! We need to communicate with the Spawn
Manager script and tell it to stop when the game is over.

Make the World Whiz By – Step 7 : Destroy obstacles that
exit bounds
Just like the animals in Unit 2, we need to destroy any obstacles that exit boundaries.
Otherwise they will slide into the distance… forever!

Next Week : To Be
Continue…

• Run and Jump Prototype
• Jump Force

• Make the World Whiz By

• Don’t Just Stand There

• Particles and Sound Effects

