
การเขยีนโปรแกรมคอมพวิเตอรข์ ั ÊนสงูเพืÉอ
ควบคมุอุปกรณ์

Advance Computer Programming

สอนโดย พงศธร เกยีรตเิจรญิพร (มวิ)

[สปัดาหท์ีÉ 7]

Unit 3 – Sound and Effects (Run and Jump
Prototype)

Unit 3 – Animation, Sound and Effects

• Run and Jump Prototype
• Jump Force

• Make the World Whiz By

• Don’t Just Stand There

• Particles and Sound Effects

Don’t Just Stand There – อยา่แค่
ยนืเฉยๆ ส!ิ

Don’t Just Stand There

• Step 1 : Explore the player’s animations

• Step 2 : Make the player start off at a run

• Step 3 : Set up a jump animation

• Step 4 : Adjust the jump animation

• Step 5 : Set up a falling animation

• Step 6 : Keep player from unconscious jumping

Don’t Just Stand There – Step 1: Explore the
player’s animations
1. Double-click on the Player’s Animation Controller, then explore the different Layers,

double-clicking on States to see their animations and Transitions to see their
conditions

In order to get this character moving their arms and legs, we need to explore the
Animation Controller.

New Concept : Animator
Controller
New Concept : States and
Conditions

Don’t Just Stand There – Step 2: Make the player
start off at a run

1. In the Parameters tab, change the Speed_f variable to 1.0
2. Right-click on Run_Static > Set as Layer Default State
3. Single-click the the Run_Static state and adjust the Speed value in the inspector to

match the speed of the background

Now that we’re more comfortable with the animation controller, we can tweak some variables
and settings to make the player look like they’re really running.

Tip: Notice how it transitions from
idle to walk to Run - looks
awkward - that’s why need to
make run default

Don’t Just Stand There – Step 3: Set up a jump
animation

1. In PlayerController.cs, declare a new private Animator playerAnim;
2. In Start(), set playerAnim = GetComponent<Animator>();
3. In the if-statement for when the player jumps, trigger the jump:

animator.SetTrigger(“Jump_trig”);

The running animation looks good, but very odd when the player leaps over obstacles. Next
up, we need to add a jumping animation that puts a real spring in their step.

Tip: SetTrigger is helpful when you
just want something to happen once
then return to previous state (like a
jump animation)

New Function: anim.SetTrigger

Don’t Just Stand There – Step 4: Adjust the
jump animation

1. In the Animator window, click on the Running_Jump state, then in the inspector
and reduce its Speed value to slow down the animation

2. Adjust the player’s mass, jump force, and gravity modifier to get your jump just
right

The running animation plays, but it’s not perfect yet, we should tweak some of our character’s
physics-related variables to get this looking just right.

Don’t Just Stand There – Step 5: Set up a falling
animation

1. In the condition that player collides with Obstacle, set the Death bool to true
2. In the same if-statement, set the DeathType integer to 1

The running and jumping animations look great, but there’s one more state that the character should
have an animation for. Instead of continuing to sprint when it collides with an object, the character
should fall over as if it has been knocked out.

New Function:
anim.SetBool
New Function:
anim.SetInt

Don’t Just Stand There – Step 6: Keep player from

unconscious jumping

1. To prevent the player from jumping while unconscious, add && !gameOver to the
jump condition

Everything is working perfectly, but there’s one small disturbing bug to fix: the player can
jump from an unconscious position, making it look like the character is being defibrillated.

New Concept: ! “Does not”
and !=“Does not equal”
operators

Tip: gameOver != true is
the same as gameOver ==
false

Particles and Sound Effects – มาใส่ Effect ให้
น่าตืÉนเตน้กนั!

Particles and Sound Effects

• Step 1 : Customize an explosion particle

• Step 2 : Play the particle on collision

• Step 3 : Add a dirt splatter particle

• Step 4 : Add music to the camera object

• Step 5 : Declare variables for Audio Clips

• Step 6 : Play Audio Clips on jump and crash

Particles and Sound Effects – Step 1 : Customize an explosion
particleThe first particle effect we should add is an explosion for when the player collides
with an obstacle.1. From the Course Library > Particles, drag FX_Explosion_Smoke

into the hierarchy, then use the Play / Restart / Stop buttons to
preview it

2. Play around with the settings to get your particle system the way
you want it

3. Make sure to uncheck the Play on Awake setting
4. Drag the particle onto your player to make it a child object, then

position it relative to the player

New Concept: Particle
Effects

Warning: Don’t go crazy
customizing your particle
effects, you could easily get
sidetracked

New Concept: Child
objects with relative
positions

Tip: Hovering over the
settings while editing your
particle provides great tool
tips

Particles and Sound Effects – Step 2 : Play the particle on
collision
We discovered the particle effects and found an explosion for the crash, but we need to assign it to
the Player Controller and write some new code in order to play it.1. In PlayerController.cs, declare a new public ParticleSystem

explosionParticle;
2. In the Inspector, assign the explosion to the explosion particle

variable Make sure to uncheck the Play on Awake setting
3. In the if-statement where the player collides with an obstacle, call

explosionParticle.Play();, then test and tweak the particle
properties

New Function:
particle.Play()

Particles and Sound Effects – Step 3 : Add a dirt splatter particleThe next particle effect we need is a dirt splatter, to make it seem like the player is kicking up ground
as they sprint through the scene. The trick is that the particle should only play when the player is on
the ground.1. Drag FX_DirtSplatter as the Player’s child object, reposition it,

rotate it, and edit its settings
2. Declare a new public ParticleSystem dirtParticle;, then assign it in

the Inspector
3. Add dirtParticle.Stop(); when the player jumps or collides with an

obstacle
4. Add dirtParticle.Play(); when the player lands on the ground

New Function:
particle.Stop()

Particles and Sound Effects – Step 4 : Add music to the camera
objectOur particle effects are looking good, so it’s time to move on to sounds! In order to add music, we
need to attach sound component to the camera. After all, the camera is the eyes AND the ears of
the scene.
1. Select the Main Camera object, then Add Component > Audio

Source
2. From Course Library > Sound, drag a music clip onto the

AudioClip variable in the inspector
3. Reduce the volume so it will be easier to hear sound effects
4. Check the Loop checkbox

New Concept: Audio
Listener and Audio Sources

Tip: Music shouldn’t appear
to come from a particular
location in 3D space, which
is why we’re adding it
directly to the camera

Particles and Sound Effects – Step 5 : Declare variables for Audio
Clips
Now that we’ve got some nice music playing, it’s time to add some sound effects. This time audio
clips will emanate from the player, rather than the camera itself.
1. In PlayerController.cs, declare a new public AudioClip

jumpSound;
and a new public AudioClip crashSound;

2. From Course Library > Sound, drag a clip onto each new
sound variable in the inspector

Tip: Adding sound effects
is not as simple as
adding music, because
we need to trigger the
events in our code

Particles and Sound Effects – Step 6 : Play Audio Clips on jump
and crash
We’ve assigned audio clips to the jump and the crash in PlayerController. Now we need to play them
at the right time, giving our game a full audio experience
1. Add an Audio Source component to the player
2. Declare a new private AudioSource playerAudio; and initialize it as

playerAudio = GetComponent<AudioSource>();
3. Call playerAudio.PlayOneShot(jumpSound, 1.0f); when the

character jumps
4. Call playerAudio.PlayOneShot(crashSound, 1.0f); when the

character crashes

Don’t worry: Declaring a
new AudioSource
variable is just like
declaring a new Animator
or RigidBody

• Challenge 3 - Balloons, Bombs, & Booleans

Booleans
Challenge Outcome:

• The balloon floats upwards as the player holds spacebar
• The background seamlessly repeats, simulating the balloon’s

movement
• Bombs and Money tokens are spawned randomly on a timer
• When you collide with the Money, there’s a particle and sound

effect
• When you collide with the Bomb, there’s an explosion and the

background stops

• Challenge 3 - Balloons, Bombs, &
Booleans

• Challenge 3 - Balloons, Bombs, &
Booleans

Mid Term

After Midterm : To Be
Continue…

• Gameplay Mechanics
• Watch Where You’re Going

• Follow the Player

• PowerUp and CountDown

• For-Loops For Waves

