
การเขยีนโปรแกรมคอมพวิเตอรข์ ั ÊนสงูเพืÉอ
ควบคมุอุปกรณ์

Advance Computer Programming

สอนโดย พงศธร เกยีรตเิจรญิพร (มวิ)

[สปัดาหท์ีÉ 8]

Unit 4 – Gameplay Mechanics (Arcade-Style
Sumo battle)

Unit 3 – Sound and Effects

Unit 4 – Gameplay Mechanics

• Arcade-Style Sumo battle
• Watch Where You’re Going

• Follow the Player

• PowerUp and CountDown

• For-Loops For Waves

Watch Where You’re Going –
เดนิดทูางดว้ยนะ

Watch Where You’re Going

• Step 1 : Create project and open scene

• Step 2 : Set up the player and add a texture

• Step 3 : Create a focal point for the camera

• Step 4 : Rotate the focal point by user input

• Step 5 : Add forward force to the player

• Step 6 : Move in direction of focal point

Watch Where You’re Going – Step 1 : Create project

and open scene
1. Open Unity Hub and create an empty “Prototype 4” project in your

course directory on the correct Unity version.
2. download the Prototype 4 Starter Files, extract the compressed

folder, and then import the .unitypackage into your project.
3. Open the Prototype 4 scene and delete the Sample Scene without

saving
4. Click Run to see the particle effects

You’ve done it before, and it’s time to do it again... we must start a new project and
import the starter files.

Don’t worry : You can change
texture of
floating island and the color of
the sky later
Don’t worry : We’re in
isometric/orthographic view for a
reason: It just looks nicer when
we rotate around the island

Watch Where You’re Going – Step 2 : Set up the

player and add a texture

1. In the Hierarchy, create 3D Object > Sphere
2. Rename it “Player”, reset its position and increase its XYZ

scale to 1.5
3. Add a RigidBody component to the Player
4. From the Library > Textures, drag a texture onto the sphere

We’ve got an island for the game to take place on, and now we need a sphere for the player
to control and roll around.

New Concept : Texture wraps

Watch Where You’re Going – Step 3 : Create a focal

point for the camera
1. Create a new Empty Object and rename it “Focal Point”,
2. Reset its position to the origin (0, 0, 0), and make the Camera

a child object of it
3. Create a new “Scripts” folder, and a new “RotateCamera” script

inside it
4. Attach the “RotateCamera” script to the Focal Point

If we want the camera to rotate around the game in a smooth and cinematic fashion, we need
to pin it to the center of the island with a focal point.

- Don’t worry : This whole “focal
point” business may be confusing
at first, but it will make sense
once you see it in action
- Tip : Try rotating the Focal point
around the Y axis and see the
camera rotate in scene view

Watch Where You’re Going – Step 4 : Rotate the focal

point by user input

1. Create the code to rotate the camera based on rotationSpeed
and horizontalInput

2. Tweak the rotation speed value to get the speed you want

Now that the camera is attached to the focal point, the player must be able to rotate it - and
the camera child object - around the island with horizontal input.

- Tip : Horizontal input should
be familiar, we used it all the
way back in Unit 1! Feel free to
reference your old code for
guidance.

Watch Where You’re Going – Step 5 : Add forward

force to the player

1. Create a new “PlayerController” script, apply it to the Player, and open it
2. Declare a new public float speed variable and initialize it
3. Declare a new private Rigidbody playerRb and initialize it in Start()
4. In Update(), declare a new forwardInput variable based on “Vertical” input
5. Call the AddForce() method to move the player forward based

forwardInput

The camera is rotating perfectly around the island, but now we need to move the
player. Tip : Moving objects with

RigidBody and Addforce should
be familiar, we did it back in Unit
3! Feel free to reference old code.

Don’t worry : We don’t have
control over its direction yet -we’ll
get to that next

Watch Where You’re Going – Step 6 : Move in

direction of focal point

1. Declare a new private GameObject focalPoint; and
initialize it in Start(): focalPoint =
GameObject.Find("Focal Point");

2. In the AddForce call, Replace Vector3.forward with
focalPoint.transform.forward

We’ve got the ball rolling, but it only goes forwards and backwards in a single direction! It should
instead move in the direction the camera (and focal point) are facing.

New Concept : Global vs Local
XYZ

Tip : Global XYZ directions relate
to the entire scene, whereas
local XYZ directions relate to the
object in question

Follow the player – ตามฉนั
มาเลยยย

Follow the player – Step 1 : Add an enemy and a physics

material

1. Create a new Sphere, rename it “Enemy” reposition it, and drag a
texture onto it

2. Add a new RigidBody component and adjust its XYZ scale, then test
3. In a new “Physics Materials” folder, Create > Physics Material, then

name it “Bouncy”
4. Increase the Bounciness to “1”, change Bounce Combine to “Multiply”,

apply it to your player and enemy, then test

Our camera rotation and player movement are working like a charm. Next we’re going to set up an
enemy and give them them some special new physics to bounce the player away!

Don’t worry : If your game is
lagging,
uncheck the “Active” checkbox
for your clouds
New Concept : Physics
Materials
New Concept : Bounciness
property and Bounce Combine

Follow the player – Step 2 : Create enemy script to follow

player

1. Make a new “Enemy” script and attach it to the Enemy
2. Declare 3 new variables for Rigidbody enemyRb;, GameObject

player;, and public float speed;
3. Initialize enemyRb = GetComponent Rigidbody>(); and player =

GameObject.Find("Player");
4. In Update(), AddForce towards in the direction between the

Player and the Enemy

The enemy has the power to bounce the player away, but only if the player approaches it. We must
tell the enemy to follow the player’s position, chasing them around the island.

Tip : Imagine we’re generating
this new
vector by drawing an arrow from
the
enemy to the player.

Tip : We should start thinking
ahead and writing our variables
in advance. Think… what are
you going to need?

Tip : When normalized, a vector
keeps the same direction but its
length is 1.0, forcing the enemy
to try and keep up

Follow the player – Step 3 : Create a lookDirection

variable
1. In Update(), declare a new Vector3 lookDirection

variable
2. Set Vector3 lookDirection = (player.transform.position -

transform.position).normalized;
3. Implement the lookDirection variable in the AddForce

call

The enemy is now rolling towards the player, but our code is a bit messy. Let’s clean up by
adding a variable for the new vector.

Tip : As always, adding
variables makes the code
more readable

Follow the player – Step 4 : Create a Spawn Manager for

the enemy1. Drag Enemy into the Prefabs folder to create a new Prefab, then delete Enemy
from scene

2. Create a new “Spawn Manager” object, attach a new “SpawnManager” script,
and open it

3. Declare a new public GameObject enemyPrefab variable then assign the
prefab in the inspector

4. In Start(), instantiate a new enemyPrefab at a predetermined location

Now that the enemy is acting exactly how we want, we’re going to turn it into a prefab so it
can be instantiated by a Spawn Manager.

Follow the player – Step 5 : Randomly generate spawn

position

1. In SpawnManager.cs, in Start(), create new randomly generated X and Z
2. Create a new Vector3 randomPos variable with those random X and Z

positions
3. Incorporate the new randomPos variable into the Instantiate call
4. Replace the hard-coded values with a spawnRange Variable
5. Start and Restart your project to make sure it’s working

The enemy spawns at start, but it always appears in the same spot. Using the familiar
Random class, we can spawn the enemy in a random position.

Tip : Remember, we used
Random.Range all the way back in
Unit 2! Feel free to reference old
code.

Follow the player – Step 6 : Make a method return a

spawn point

1. Create a new function Vector3 GenerateSpawnPosition() { }
2. Copy and Paste the spawnPosX and spawnPosZ variables into

the new method
3. Add the line to return randomPos; in your new method
4. Replace the code in your Instantiate call with your new function

name: GenerateSpawnPosition()

The code we use to generate a random spawn position is perfect, and we’re going to be using
it a lot. If we want to clean the script and use this code later down the road, we should store it
in a custom function. Tip : This function will come in

handy later, once we randomize a
spawn position for the powerup

New Concept : Functions that
return a value

Tip : This function is different from
“void” calls, which do not return a
value. Look at “GetAxis” in
PlayerController for example - it
returns a float

To Be Continue…

• Gameplay Mechanics
• Watch Where You’re Going

• Follow the Player

• PowerUp and CountDown

• For-Loops For Waves

