P~ | a 6 02 di
MW LUTUNINA D NNILG DIUURILNE
mquqﬂmtﬁ:

Advance Computer Programming

[§UANHN 8]

raulas WIATY LNUIALIUWT (X7)

Unit 4 — Gameplay Mechanics (Arcade-Style

Unit 4 =Gameplay Mechanics

® Arcade-Style Sumo bi

.
¢ Watch Where You’ig\)@omg,

/ .
® Follow the Player N -
® PowerUp and CountDown
® For-Loops For Waves .

Watch Where You're Going —

G171 IN G

Watch VW?@re You're Going

® Step 1 : Create pykect and open scene
® Step 2: Set up the)dlayer/ and add a exture
® Step 3 : Create a focal pow%r the camera
® Step 4 : Rotate the focal point by user input
® Step 5 : Add forward force to the player

Step 6 : Move in direction of focal poin

aBohoOpen @lﬂ@ and it's time to do it again... we must start a project and

npport t?)%g’g%tr%{yfugg'and create an empty “Prototype 4” project in you
course directory on the correct Unity version.

2. download the Prototype Mer Files, extract the compress
folder, and then import th@‘.ugilypackage into your project®
3. Open the Prototype 4 scene and delete,ts%iample Scene without
: (: Don’t worry : You can change
saving texture of
4. Click Run to see the particle effects floating island and the color of

isometric/orthographic view for a
reason: It just looks nicer when
we rotate around the island

the sky later
- .

W@%%t%ﬂmr%éﬁm & take place on, and now we need a s

to control and roll around.

1.
2.

In the Hierarchy, create 3D Object > Sphere
Rename it “Player”, reséj& position and increase its XY

scale to 1.5 Q.\)) -
Add a RigidBody component to the’ Pﬁ? .
From the Library > Textures, drag a textlre onto the sphere

for the player

New Concept : Texture wr

point for ﬂ?e\camera

il we walt @RI TeNVtS foRite QRiGRYE and Jenamedtshaagl FAaittrema 5hion, we need
td.pin it idethetadmtposttite tsldhe wittgin fddaDpdint.and make the Came

a child object of it
3. Create a new “Scripts” QL%e} and a new “RotateCamagl@*Script

@

&

inside it o .
_ >/ _ - Don’t worry : This whole “focal
4. Attach the "RotateCamera” script to the“focal Point boint” business may be confusing

at ﬁrst, but it will make sense

= H|erar‘.:h4-,v m-= O Inspector =
Create - | (G-’ & [Focal Point Static w once you see it in action
v € Prototype 4* =] o ™

B]
| Directional Light Tag | untagged Layer | Default

- Tip : Try rotating the Focal point

W 5 Mist v ¥ . Transform

» i SkyDome » | Position ' M Z | around the Y axis and see the ‘
g Island > Rotation Y |

@ Focal Point

camera rotate in scene view

RoOtat IMera
j Add Component

point by J%r\input

Now that the camera is attached to the focal point, the player must be abl tate it - and
the camera child object - around the island with horizontal input.
- Tj rizontal input should
1. Create the code to rot£ camera based on rotation iliar, we used it all the
O e 4]
and horizontallnput VW './. way back in Unit 1! Feel free to

reference your old code for

2. Tweak the rotation speed value to g\ét\{/b{@speed you want

guidance.

public float rotationSpeed;

void Update()

float horizontalInput = Input.GetAxis("Horizontal");
transform.Rotate(Vector3.up, horizontalInput * rotationSpeed * Time.deltaTime);

}

f@ﬁ@@arﬁérs Srd? _ erfectly around the island, but now we nee ove the

Tip ng objects with

Player'Create a new “PlayerController” script, apply it to the Player, andk and Addforce should
2. Declare a new public float speed variable and initialize it b ar, we did it back in Unit
3. Declare a new private Rig@Bo® playerRb and initialize it in S free to reference old code.
4. In Update(), declare a new Taguardinpyt variable based o rtiggls '%?Ht: We don't have

5

Call the AddForce() method to move the player forward based#* control over its direction yet -we’l
forwardInput \ get to that next

private Rigidbody playerRb;
public float speed = 5.0f;

void Start() {
playerRb = GetComponent<Rigidbody>(); }

void Update() {
float forwardInput = Input.GetAxis("Vertical");

playerRb.AddForce(Vector3.forward * speed * forwardInput); }

direction E)?chaI point

We've got the ball rolling, but it only goes forwards and backwards in a

ifstead nideelaréha direntiorithel catera dano fodaf point) @net feaaimd.
initialize it in Start(): focglPoint =
GameObject.Find("Foc F%}'\t");

2. In the AddForce call, Repldce Vedtgr3.forward with

focalPoint.transform.forward (\'//

private GameObject focalPoint;

void Start() {
playerRb = GetComponent<Rigidbody>();
focalPoint = GameObject.Find(“Focal Point™); }

void Update() {
float forwardInput = Input.GetAxis("Vertical");

playerRb.AddForce(¥ecter3—Fforward focalPoint.transform.forward

* speed * forwardInput); }

single, E)llt edld s Local

: Global XYZ directions relate
to the entire scene, whereas
« local XYZ directions relate to the

object in question

Follow the player — GNNDU

. c>\
material

Our camera rotation and player movement are working like a charm. Next wely
enemy aadegtventhem3pesresasnenspaciahaiay pipysiasnia, kelngadhe player a

texture onto it k the “Active” checkbox

2. Add a new RigidBody compo ‘d adjust its XYZ scale, then test

3. In a new “Physics Materials” 1ze\r, 9reate > Physics Material, then _
name it “Bouncy” N — New Concept : Physics

4. Increase the Bounciness to “1”, change Bounce &@mbine to “Multiply”, « Materials
apply it to your player and enemy, then test S>/ New Concept : Bounciness

property and Bounce Combine

player '>\

The enemy has the power to bounce the player away, but only if the player ap

tell the qapy .l RRp*ENS %%%lté’@ac‘ﬂ‘ﬁsﬂé?%t@eéﬂe%‘i/“”d the 'S'a”dhe

2. Declare 3 new variables for
player;, and public float spegd;

3. Initialize enemyRb = GetCompaﬁgnt ngld)aody>(); and player =
GameObject.Find("Player"); \

4. In Update(), AddForce towards in the direCtiMween the

Player and the Enemy

igidbody enemyRb;, GameObject

public float speed = 3.0f;
private Rigidbody enemyRb;
private GameObject player;

void Update() {
enemyRb.AddForce((player.transform.position
- transform.position).normalized * speed); }

3 in advance. Think... what are

Tip
this

ine we’re generating
Bl W e Hrom
the player.

: We should start thinking
ahead and writing our variables

you going to need?

Tip : When normalized, a vector
keeps the same direction but its
length is 1.0, forcing the enemy
to try and keep up

variable '>\

The enemy is now roiling towards the player, but our code is a bit messy.

ddding AvhiRdater fieciaik sapw Vector3 lookDirection

variable

2. Set Vector3 IookDirecti{ﬁ')alayer.transform.position -
transform.position).normahlifed; »/ |

3. Implement the lookDirection variablexﬁin "AddForce
call |

void Update() {
Vector3 lookDirection = (player.transform.position
- transform.position).normalized;

enemyRb.AddForce(lookDirection {piayer—transform—position
—transform-position)—rnormalized * speed); }

Ti

clean up by

always, adding
es makes the code
re readable

t
be eB nemy. into the Prefabs folder to create a new Prefab,
Now that the enemy is acting exactly how we want, we're going to turn it i

can be HheENESRNELY a Spawn Manager.
2.

delete Enemy
prefab so it

Create a new “Spawn Manager” object, attach a new “Spa nager” script,

. U 2
and open it o~)

Declare a new public GameObject 'eﬁemyPrefab variable then assign the

prefab in the inspector

In Start(), instantiate a new enemyPrefab at a predetermined location

public GameObject enemyPrefab;

void Start()
{

Instantiate(enemyPrefab, new Vector3(e, @, 6),
enemyPrefab.transform.rotation); }

position '>\
The enemy spawns at start, but it always appears in the same spot. Usin familiar
Random{igps\WaVESARRSMES e Ehemy), ereEBIRBWPPSH9OMIy gener and Z
2. Create a new Vector3 r?dePos variable with those ran and Z
positions \\/) >
3. Incorporate the new randomPos variable into the Instantiate 1@aRemember, we used
Replace the hard-coded values with “ab;éwnRange Variablelffdir::?c;r;;???eeeig trf;?evrfnyc:acjz ’

S. Start and Restart your project to make sure it's working

public GameObject enemyPrefab;
private float spawnRange = 9;

void Start() {

float spawnPosX = Random.Range(—85—9— spawnRange, spawnRange);

float spawnPosZ = Random.Range(—85—9—-spawnRange, spawnRange);

Vector3 randomPos = new Vector3(spawnPosX, ©, spawnPosZ);
Instantiate(enemyPrefab, randomPos, enemyPrefab.transform.rotation); }

-
FRAWIE ROUEH 1o jenerate a random spawn position is perfect, and w ing to be using
it a lot. If we want to clean the script and use this code later down the roa should store it

in a custom function.
Create a new function Vector3 GenerateSpawnPosition() { }

2. Copy and Paste the spawr’S\and spawnPosZ variables into
the new method *‘\/ >

3. Add the line to return randomPos; in your new method
Replace the code in your Instantiate call W'i‘twrbdjr new function

name: GenerateSpawnPosition()

void Start() {
Instantiate(enemyPrefab, GenerateSpawnPosition()

newVYector3{spawnPosX;—05—spawnPesZ), enemyPrefab.transform.rotation);

2 2
ST SRR o P 5 PO PO o RO R . P
o oS - = STICOMm S

private Vector3 GenerateSpawnPosition () {
float spawnPosX = Random.Range(-spawnRange, spawnRange);
float spawnPosZ = Random.Range(-spawnRange, spawnRange);
Vector3 randomPos = new Vector3(spawnPosX, ©, spawnPosZ);
return randomPos; }

w Concept : Functions that
return a value

Tip : This function is different from
“void” calls, which do not return a
value. Look at “GetAxis” in
PlayerController for example - it
returns a ﬂoat

>

® Gameplay Mechanics

Watch Where You're Going

L 2
Follow the Player Q.

PowerUp and Cou ntDown

For-Loops For Waves

"

8

Continue.

