
การเขียนโปรแกรมคอมพิวเตอรข์ ั Êนสงู
เพืÉอควบคมุอปุกรณ์

ADVANCE COMPUTER 
PROGRAMMING

สอนโดย พงศธร เกยีรติ
เจรญิพร (มวิ)

15/09/2021 1



15/09/2021 2



15/09/2021 3



15/09/2021 4



15/09/2021 5



15/09/2021 6



15/09/2021 7



15/09/2021 8



15/09/2021 9



(Arcade-Style Sumo 
battle)

15/09/2021 10



15/09/2021 11

Unit 4 – Gameplay Mechanics 

• Arcade-Style Sumo battle
• Watch Where You’re Going

• Follow the Player

• PowerUp and CountDown

• For-Loops For Waves



15/09/2021 12

PowerUp and CountDown – เพิÉมพลงั
และนบัถอยหลงั



15/09/2021 13

PowerUp and CountDown

• Step 1 : Choose and prepare a powerup

• Step 2 : Destroy powerup on collision

• Step 3 : Test for collision with a powerup

• Step 4 : Apply extra knockback with powerup

• Step 5 : Create Countdown Routine for powerup

• Step 6 : Add a powerup indicator



15/09/2021 14

PowerUp and CountDown – Step 1 : Choose and 
prepare a powerupIn order to add a completely new gameplay mechanic to this project, we will introduce a new powerup object that will give the
player temporary superpowers.
1. From the Library, drag a Powerup object into the scene, 

rename it “Powerup” and edit its scale & position 
2. Add a Box Collider to the powerup, click Edit Collider to 

make sure it fits, then check the “Is Trigger” checkbox 
3. Create a new “Powerup” tag and apply it to the powerup
4. Drag the Powerup into the Prefabs folder to create a new 

“Original Prefab”

Warning : Remember, 
you still have to apply 
the tag after it has been 
created.



15/09/2021 15

PowerUp and CountDown – Step 2 : Destroy powerup 
on collisionAs a first step to getting the powerup working, we’ll make it disappear when the player hits it and set up a new boolean
variable to track that the player got it.

1. In PlayerController.cs, add a new OnTriggerEnter()
method

2. Add an if-statement that destroys 
other.CompareTag("Powerup") powerup on collision 

3. Create a new public bool hasPowerup; and set 
hasPowerup = true; when you collide with the Powerup

Don’t worry : If this doesn’t 
work, make sure that the 
Powerup’s collider “Is trigger” 
and player’s collider is NOT
Tip : Make sure hasPowerup = 
true in the inspector when you 
collide



15/09/2021 16

PowerUp and CountDown – Step 3 : Test for enemy 
and powerup
The powerup will only come into play in a very particular circumstance: when the player has a powerup AND they 
collide with an enemy - so we’ll first test for that very specific condition.
1. Create a new “Enemy” tag and apply it to the Enemy 

Prefab
2. In PlayerController.cs, add the OnCollisionEnter()

function 
3. Create the if-statement with the double-condition

testing for enemy tag and hasPowerup Boolean
4. Create a Debug.Log to make sure it’s working

Tip : OnTriggerEnter is good for 
stuff like picking up powerups, but 
you should use OnCollisionEnter
when you want something to do 
with physics

New Concept : Concatenation in 
Debug
Messages

Tip : When you concatenate a 
variable in a debug message, it 
will returns its VALUE not its name



15/09/2021
17

PowerUp and CountDown – Step 4 : Apply extra 
knockback with powerup
With the condition for the powerup set up perfectly, we are now ready to program the actual powerup ability: when 
the player collides with an enemy, the enemy should go flying!

1. In OnCollisionEnter() declare a new local variable to get 
the Enemy’s Rigidbody component

2. Declare a new variable to get the direction away from the 
player

3. Add an impulse force to the enemy, using a new 
powerupStrength variable

Tip : Reference the code in 
Enemy.cs that makes the 
enemy follow the player. In a 
way, we’re reversing that 
code in order to push the 
enemy away.

Don’t worry : No need to use 
.Normalize, since they’re 
colliding



15/09/2021
18

PowerUp and CountDown – Step 5 : Create Countdown 
Routine for powerup
It wouldn’t be fair to the enemies if the powerup lasted forever - so we’ll program a countdown timer that starts 
when the player collects the powerup, removing the powerup ability when the timer is finished.

1. Add a new IEnumerator PowerupCountdownRoutine () {}
2. Inside the PowerupCountdownRoutine, wait 7 seconds, 

then disable the powerup 
3. When player collides with powerup, start the coroutine

New Concept: IEnumerator
New Concept: Coroutines
Tip: WaitForSeconds()



15/09/2021
19

PowerUp and CountDown – Step 6 : Add a powerup 
indicator
To make this game a lot more playable, it should be clear when the player does or does not have the powerup, so 
we’ll program a visual indicator to display this to the user.
1. From the Library, drag a Powerup object into the scene, rename it 

“Powerup Indicator”, and edit its scale
2. Uncheck the “Active” checkbox in the inspector
3. In PlayerController.cs, declare a new public GameObject powerupIndicator

variable, then assign the Powerup Indicator variable in the inspector
4. When the player collides with the powerup, set the indicator object to 

Active, then set to Inactive when the powerup expires
5. In Update(), set the Indicator position to the player’s position + an offset 

value

New Function: SetActive
Tip: Make sure the indicator 
is turning on and off before 
making it follow the player



15/09/2021 20

For-Loops For Waves – วนเวยีนเรยีงหน้า
กนัเขา้มาไดเ้ลย



15/09/2021 21

PowerUp and CountDown• Step 2 : Give the for-loop a parameter

• Step 3 : Destroy enemies if they fall off

• Step 4 : Increase enemyCount with 

waves

• Step 5 : Spawn Powerups with new 

waves



15/09/2021 22

PowerUp and CountDown – Step 1 : Write a for-loop 
to spawn 3 enemiesWe should challenge the player by spawning more than one enemy. In order to do so, we will repeat enemy 
instantiation with a loop.

1. In SpawnManager.cs, in Start(), replace single 
Instantiation with a for-loop that spawns 3 enemies

2. Move the for-loop to a new void SpawnEnemyWave()
function, then call that function from Start()

New Concept : For-loops

Don’t worry : Loops are a bit 
confusing at first, but they 
make sense eventually. 
Loops are powerful tools that 
programmers use often

New Concept : ++ Increment 
Operator



15/09/2021 23

PowerUp and CountDown – Step 2 : Give the for-loop 
a parameter
Right now, SpawnEnemyWave spawns exactly 3 enemies, but if we’re going to dynamically increase the number of enemies 
that spawn during gameplay, we need to be able to pass information to that method.

1. Add a parameter int enemiesToSpawn to the 
SpawnEnemyWave function

2. Replace i < __ with i < enemiesToSpawn
3. Add this new variable to the function call in Start(): 

SpawnEnemyWave(___);

New Concept : Custom methods with 
parameters

Tip : GenerateSpawnPosition returns a 
value, SpawnEnemyWave does not. 
SpawnEnemyWave takes a parameter, 
GenerateSpawnPosition does not.



15/09/2021 24

PowerUp and CountDown – Step 3 : Destroy enemies 
if they fall off
Once the player gets rid of all the enemies, they’re left feeling a bit lonely. We need to destroy enemies that fall, and spawn 
a new enemy wave once the last one is vanquished!

1. In Enemy.cs, destroy the enemies if their position is less 
than a -Y value 

2. In SpawnManager.cs, declare a new public int enemyCount
variable

3. In Update(), set enemyCount = 
FindObjectsOfType<Enemy>().Length;

4. Write the if-statement that if enemyCount == 0 then 
SpawnEnemyWave

New Function : FindObjectsOfType



15/09/2021 25

PowerUp and CountDown – Step 4 : Increase 
enemyCount with waves
Now that we control the amount of enemies that spawn, we should increase their number in waves. Every time the player 
defeats a wave of enemies, more should rise to take their place.

1. Declare a new public int waveNumber = 1;, then 
implement it in SpawnEnemyWave(waveNumber); 

2. In the if-statement that tests if there are 0 enemies left, 
increment waveNumber by 1

Tip : Incrementing with the ++ operator is 
very handy, you may find yourself using it 
in the future



15/09/2021 26

PowerUp and CountDown – Step 5 : Spawn Powerups 
with new wavesOur game is almost complete, but we’re missing something. Enemies continue to spawn with every wave, but the powerup 
gets used once and disappears forever, leaving the player vulnerable. We need to spawn the powerup in a random position 
with every wave, so the player has a chance to fight back.
1. In SpawnManager.cs, declare a new public 

GameObject powerupPrefab variable, assign the 
prefab in the inspector and delete it from the scene 

2. In Start(), Instantiate a new Powerup
3. Before the SpawnEnemyWave() call, Instantiate a new 

Powerup

Tip : Now that we have a very 
playable game, let’s test and tweak 
values



CHALLENGE 4
Soccer Scripting

15/09/2021 27



15/09/2021 28



CHALLENGE 4
Soccer Scripting

15/09/2021 29



CHALLENGE 4
Soccer Scripting

15/09/2021 30



CHALLENGE 4
Soccer Scripting

15/09/2021 31


